

Pseudonymous Authentication and Au-
thorization enhancing ubiquitous Identity

Management

Thomas Hildmann, Thomas J. Wilke

Forschungszentrum für Netzwerktechnologien und Multimedia-

Anwendungen (FSP-PV), Sekr. MA073, Strasse des 17. Juni 136, 10623 Berlin

{hildmann | tjw}@prz.tu-berlin.de

Abstract

Security management for complex IT-infrastructures with heterogeneous components is a demanding

challenge. One aspect of this undertaking is the ubiquitous identity management ensuring homogene-

ous security quality of the authentication and the authorization. Different to common praxis employ-

ing an implicit authorization within identity management systems, this contribution will present and

discuss an identity management approach with an explicit authorization mechanism.

1 Introduction
Granting or denying access to a digital resource would not be an issue when we would have to

deal with granting or denying only. The real problem is giving access to authorized persons

but denying it to all others [Schn00].

In the early days of computers access control could be managed by knowing each other and

having access to the computer console. Nowadays access control is hard to manage. More and

more organizations are working on identity management systems. This can cover the problem

of identification of persons in a distributed environment, but is no solution for authorization.

Managing the authorization implicitly or with lean structures (e.g. with attributes in the iden-

tity management system, IDMS) can be a solution for some application fields. We strongly

recommend an explicit authorization using an ubiquitous role-based access control model.

Such an approach does not need a big-brother component which is able to track all users in a

system. Pseudonymity can be realized during authentication and authorization.

This article is structured in four parts: In a first step the security related problems of an ubiqui-

tous identity management in terms of transparency, data protection, privacy and support of

multi administrative authorities are analyzed and requirements are rolled out. Mechanisms of

new security paradigms like multi lateral security, enhanced data protection, privacy and multi

administrative domains are introduced, resolving the conflicting security requirements. In a

second step several architectures are presented which cover the discussed security require-

ments within various qualities. The impact and appropriate scenarios for the different architec-

tures are discussed afterwards. Finally the applied strategies, implemented mechanisms and

presented architectures are summarized and compared to the common approaches.

2 Pseudonymous Authentication and Authorization enhancing ubiquitiuos IDM

2 Requirements and Mechanisms

We examine a client-server based network system with different services (e.g. Web-based ser-

vices). Many authorization systems do so by considering the requirements of the system main-

tainers only. Nowadays more and more the requirements of the system’s users come to the

fore, this includes also the privacy of users. Coming from the classical model where authoriza-

tion follows authentication, the first can be implemented using a smart-card based pseudony-

mous authentication system (described later) or achieved with any other authentication fitting

the requirements. The following sections will describe the used mechanisms and the require-

ments we are interested in.

2.1 RBAC-Model

The NIST standard for role-based access control [FSG+01] defines a hierarchical RBAC

model. The model discussed in this paper is derived from this. The UML representation of this

model is presented in [ShAh00], here we are using a simplified version of the class diagram.

Fig. 1: UML Class Diagram: Hierarchical RBAC Model

A user is assigned to one or more roles which can inherit other roles. With this construct a role

hierarchy can be build. Permissions (objects and operations on these objects) can be assigned

to these roles. When a user establishes a session this activates one or more roles for this user.

This model works perfectly for a single application. To realize a ubiquitous model for an envi-

ronment with multiple applications, it is necessary to separate a common and an application

specific part of the model.

Figure 2 shows an extended model where “role” is separated into three role-types:

• SBR: Structure Business Role

• ABR: Application Business Role

• Access Role

Pseudonymous Authentication and Authorization enhancing ubiquitous IDM 3

Fig. 2: UML Class Diagram: Distributed RBAC Model

We distinguish between access and business roles, where business roles are roles from a busi-

ness point of view (like “project leader”, “programmer”, etc.) and access roles are roles from a

more technical point of view (like “database administrator”, “report generator”, etc.). Business

roles are divided into structure business roles SBR and application business roles ABR where

the first ones are representing the organisational structure and the second ones the application

relevant business roles. Typically some ABRs have a 1:1 mapping to corresponding SBRs,

sometimes with different vocabulary depending on application’s context.

The dotted box contains the ubiquitous, application independent model. This is typically the

faster changing part. Users can be administered using a classical identity management system

(IDM). Further the structure of the organisation or community must be modelled. This part

normally does not change as much as the users. At least the ABR model is only changing if

there are changes within the application. The ABRs must be mapped to the SBRs in an appro-

priate way. Details will be given later.

2.2 ADF/AEF Authorization

The authorization can be separated into two different components: The access enforcement fa-

cility (AEF) and the access decision facility (ADF). A subject requests access to an object to

the AEF. The AEF confirms this query on the ADF. Then this query is answered by the ADF

and access is granted or denied. Application, AEF and ADF can be implemented in different

modules, programs or even on different machines. The AEF component can be part of an ap-

plication level firewall for example. The ADF component can be centralised to implement a

common security policy, to base access decisions on up-to-date access control information or

to reduce administration efforts.

Please note that parts of the RBAC model can be administrated by different users (e.g. in parts

by the users themselves). Administrative roles can be defined to secure the model itself. This

separation of duty increases the security of the system, distributes the effort, can make the se-

curity policy more transparent for the users and can prevent latency in case of changes. The

ADF itself can be distributed again and can be used to interact with different institutes, loca-

tions or even between different organisations or companies [HiBa99].

2.3 User-Tracking: Identity vs. Privacy

One of the main issues of a centralized authorization is tracking information which can be

gathered on the ADF server. Assuming every application queries the ADF to check the au-

4 Pseudonymous Authentication and Authorization enhancing ubiquitiuos IDM

thorization of a user, the ADF is able to gather the user-id, the used application, eventually

every accessed object, date and time. This issue can be solved in different ways. Some exam-

ples are:

1. The ADF component can be distributed and AEFs can randomly change their used ADF

component. In this case the data the access decisions are based on must be mirrored or

must be accessible by each ADF instance.

2. AEF can randomly generate “fake queries” to mask the real access queries. But this

causes traffic and raises the load of the ADF.

3. Knowledge of the requests can be distributed in a way that gives incomplete information

to every party.

It is a usual requirement that a complete log can be generated in case of an incident. This is

possible by synchronizing the logs of all evolved systems and gathers the information on de-

mand. The requirement needs it to be a great effort in time and personal engagement when

demanded. The implementation has to be balanced so that user tracking is too difficult for

every day work but easy enough for forensic analysis for example.

2.4 Smart-card-based pseudonymous Authentication

The pseudonymous authentication with smart-cards is described in [Hild01]. The basic idea of

this authentication process is: A smart-card initiates a public-key three way authentication

with one authentication server (randomly chosen). The authentication server can check a card-

revocation list by using a card-identifier which can not be mapped to a user. The user-

identifier is encrypted by the smart-card and can be decrypted by the AEF of the application.

After this authentication the validity of the smart-card is checked, the user is identified. But

only the application has a user-identifier. The authentication servers just get parts of the in-

formation.

3 Architectures
Covering authentication and authorization processes comprises that there are always parties

knowing at least some parts of the facts. Distributing the knowledge to a number of parties

having divergent interests in the best case is the basic idea. Information distribution and

avoidance are principles of multilateral security. The advantages of the implementation of

these principles are fairly discussed [MüRa99]. With the given requirements and principles in

mind there are still several decisions to make. A general question is: Which data represents

the user-session? The second question is: How to deploy a system to cover the requirements

and realize the principles?

Pseudonymous Authentication and Authorization enhancing ubiquitous IDM 5

3.1 Session Representation Method

The RBAC model typically activates a role for a user during a session. Many authentication

systems simply bind all relevant data of the user to a session (e.g. after logging in on a Unix

system the username, real-name eventually phone number etc. pp. can be discovered). A

unique identifier, a kind of pseudonym is enough for authentication. In a role-based environ-

ment the activated role for the current session is enough to check the subject’s permission. It

is possible to use the pseudonymous identity for role activation only. Supposing the role acti-

vation is done by a separated instance an AEF is able to handle the access decision requests

without any knowledge of the user’s identity.

In a Web-based environment the session is typically represented by a browser cookie or a ses-

sion identifier linked to the URL. This session identifier can hold the activated role itself or a

reference to the role or role list. It is also imaginable to hold the role or role list in the server

application and to use an application-specific identifier for the session.

From a dataflow point of view the role-information can be stored at the client (cookie or URL

with role-information), at the server (application session id) or at the ADF instance (ADF ses-

sion id). Please notice that in case of a server or ADF storage of the role-information setting a

cookie or adding a session id on client-side is still necessary to handle the Web-session.

In all cases the role-information can be encrypted in a way that only the ADF is able to read it.

On the other hand it seems to look like Voodoo for application developers not to know the

role of the user working with the application although this knowledge is not necessary to

check the permissions.

Storing the role-information on the client side seems to be a good way in most cases. It pre-

vents other components from handling with timeouts, with great amounts of session data or

orphaned sessions. A client has to store single session information only and closing the

browser or surfing to other websites will be handled correct for the session.

3.2 Knowledge Deployment Methods for Access Queries

Most of the current applications are designed in a way that integrates AEF and ADF within

the application itself. Often AEF and ADF are mixed up and permissions are handled implic-

itly. Applications that are designed this way are not able to share the knowledge of the

user/role structures or easily implement a common policy. A good component design is able to

share the user/structure data with other applications and manages the application specific data

on its own. Therefore we suggest to separate the ADF component in two parts: An ubiquitous

user/structure part and an application specific part. Each application has its own point of view.

This point of view depends on the application’s requirements. On the other hand the applica-

tion’s role-model will fit into the overall role-model. This is where our application business

roles (ABR) are mapped to the structure business roles (SBR). This division seems to be a

good place for distributing the user-tracking knowledge. Assuming an application specific

ADF and an organisation specific ADF it is possible to separate information about the user’s

actions in different ways.

6 Pseudonymous Authentication and Authorization enhancing ubiquitiuos IDM

1.1.1 ADF-Blinding

Fig. 3: UML Deployment Diagram: ADFBlinder Architecture

Figure 3 shows a system architecture using a blinding mechanism to distribute the knowledge

about the user behaviour. Each application (App1 .. Appn) holds two symmetric cryptographic

keys (k1..n and l1..n). The AdfServer is able to isolate processes. Depending on the used operat-

ing system there are techniques like jails, compartments or software partitions to realize this.

There are ADF-instances (ADF1 .. ADFn) for each application (App1 .. Appn). The ADFn in-

stance holds the key kn for the corresponding application Appn. The ADFBlinder holds a list of

the keys l1..n.

To do an authorization query the following protocol can be used:

• The authorization query for App1 is encrypted with k1.

• AEF1 encrypts the application id of App1 with l1. Typically a random value must be en-

crypted together with this id to prevent the ciphers from looking the same after encryp-

tion and make comparisons of the ciphers impossible.

• The encrypted query and the encrypted application id are sent to the ADF-interface.

• ADFBlinder is able to decrypt the application id using l1.

• The query is forwarded to the corresponding ADF1.

• ADF1 is able to decrypt the query.

• Again the answer is encrypted with k1 and is send back to AEF1 the same way.

Pseudonymous Authentication and Authorization enhancing ubiquitous IDM 7

1.1.2 Hiding of Structure-Application-Mapping

Fig. 4: UML Deployment Diagram: Hiding of Structure-Application-Mapping

The classical solution using Chaume’s Mixes [Chau81] is shown in figure 4. This architecture

shows that the ADFn-Part can also be settled on the application’s machine. The centralized

ADF component (ADF*) is used for the user � structure business role(s), SBR � application

business role, ABR mapping. ADFn is able to compose queries about the user and SBR. This

query is randomly sent through a cascade of mixes. This makes it impossible for ADF* to re-

construct which application is used by the user.

A protocol example:

• AEF1 sends an authorization request to ADF1.

• ADF1 composes a list of possible SBR mapping-roles.

• The SBR-list and the session id is send via mixes to ADF*.

• ADF* is able to check the membership of the user according to the session id.

• The membership-list is send back via mixes to ADF1.

The mixes are used to hide the identity of the ADFn initiating the mapping process from the

ADF*. This enables ADF* to record the user-role-relationships but prohibits knowledge of the

application the user utilised.

8 Pseudonymous Authentication and Authorization enhancing ubiquitiuos IDM

1.1.3 Isolated ADF-Components

Fig. 5: UML Deployment Diagram: Isolated ADF-Components

Another possible implementation is using a broker architecture (see figure 5). This scenario

needs no further encryption. It depends on a cryptographic end-to-end connection only.

• AEF1 connects to the broker ADFB (Access Decision Facility Broker) and sends its ap-

plication id.

• The ADFB returns the pointer to the ADF-instance ADF1.

• AEF1 connects to ADF1 and sends the query.

• The following communication is AEF-ADF-bilateral.

The privacy enhancement results from the separation of ADF-components for each applica-

tion. Only application-dependent user tracking data is gained by the application corresponding

ADF instances (i.e. ADF1 just has knowledge about user behaviour on App1). This architecture

assumes a passive RBAC-Metadir (meta-directory) component which is unable to log accesses

by the ADF1..n components. If not all relevant data could be gathered by the meta-directory.

4 Discussion of the Scenarios
The ADFBlinder-approach is a common cryptographic driven architecture. The architecture

just needs a simple network connection and jailed processes. Weakness of this architecture is

the RBAC-meta-directory. This component is able to identify the ADF-instances and can pos-

sibly map them to the according application. The meta-directory also holds the data to map

users to roles etc. This means it must be ensured that the meta-directory is not able to exploit

Pseudonymous Authentication and Authorization enhancing ubiquitous IDM 9

the queries. This may be the fact if the meta-directory is a simple filesystem and tracking can

only be done by the kernel. The meta-directory can also be distributed, masked with mixes etc.

It seems that this architecture just shifts the user-tracking problem.

Hiding the mapping between user-structure and application-permission has got several advan-

tages: No additional cryptography is needed and mixes are a well-investigated area. On the

other hand driving mixes raises the effort of the system. To make mixes work properly they

should run on different machines and be run by administrators with different interests. But this

aims for the ADF-instances, too. Depending on the security requirements it would be a much

better idea running the different application depending ADF-instances on different machines.

The isolated ADF-components approach is the simplest one. It needs no additional encryption

and no mixes. On the other hand it has also the known meta-directory issue. To make this ar-

chitecture even more simple the according ADF-instance can be hard-coded (or configured)

into the AEF.

Pseudonymous authorization can also be realized using credentials [Bisk02]. Credential-based

authorization uncouples the access and the authorization requests. The problem of such an ap-

proach is the limit of the fine grain of the access control model. One strategy could be to have

a great key-ring of credentials on client-side or to make ADF-requests more often. Getting the

right credential just in time re-couples the process again. Combining the discussed architec-

tures with credential based authorization looks promising. Credentials could be used to solve

the meta-directory issue when used between the ADF1..n- and RBAC-Metadir-Components. On

the other hand the mentioned session-identifiers are already a kind of credentials depending on

their content.

5 Summary
Employing a ubiquitous identity management has several advantages. Some advantages are

based upon the implicated centralized structure which enables homogeneous policy enforce-

ment for credential management and assignment. But there are also some undesired effects

which have to be considered seriously in terms ensuring the security quality of the authentica-

tion and authorization processes, the access availability to services for legitimated individuals,

illegitimate traceability and so on. As shown there are different possibilities to address parts of

the known issues. Every architecture has its own implication. It depends on the specific re-

quirements of the project which architecture is suited best. The shown architectures are surely

not the only possible ones. Discussing this work we found an uncountable number of derivates

and modifications. Completely different solutions are also possible. These are just examples

to show how simple pseudonymous authentication can be implemented and to initiate a dis-

cussion about such enhanced identity management solutions with privacy aiding technologies.

6 Outlook
We are currently implementing a distributed role-based identity and authorization manage-

ment system at the Technical University of Berlin. We decided to use the third architecture

because its straightforwardness. The discussed meta-directory issue does not affect our im-

plementation because of parts of this component works on the filesystem and the kernel is as-

sumed to be secure. After finishing the first release we think about improvements, such as

non-repudiation features to have processes transparent to all parties. It is of interest to research

10 Pseudonymous Authentication and Authorization enhancing ubiquitiuos IDM

the correlation and implication of fine grained access models and used architectures to ensure

finding the best possible architecture to fit the demands. To lower administrative efforts more

work about administration of security models and administrative roles has to be done first.

Every idea and feedback is welcome.

7 Acknowledgment
We want to thank the whole FSP-PV/PRZ TUB IT security team for their implementation-

work on parts of the presented ideas, for many fertile discussions and useful hinds. Our spe-

cial thanks go to Klaus Hamann and Thomas Gebhardt for critical reviewing of pre-versions

of this article.

8 Literature
[Bisk02] Joachim Biskup: Credential-basierte Zugriffskontrolle: Wurzeln und ein Aus-

blick; GI Jahrestagung 2002

[Chau81] David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseu-

donyms; Communications of the ACM 24/2 (1981) 84-88.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, Ramas-

wamy Chandramouli: Proposed NIST Standard for Role-Based Access Control;

ACM Transactions on Information and System Security, Vol. 4, No. 3, August

2001, Pages 224-274.

[HiBa99] Thomas Hildmann, Jörg Bartholdt: Managing trust between collaborating com-

panies using outsourced role based access control: Proceedings of the fourth

ACM workshop on Role-based access control, Fairfax, Virginia, United States

1999, Pages: 105 – 111.

[Hild01] Thomas Hildmann: Vermeidung von Datenspuren bei smartcard-basierten Au-

thentisierungssystemen: Proceedings der GI-Fachtagung VIS 2001 12.-

14.09.2011 in Kiel, Vieweg Verlag, Seiten: 163-178.

[MüRa99] Günter Müller, Kai Rannenberg: Multilateral Security in Communications –

Technology, Infrastructure, Economy. Addison-Wesley-Longman, München,

Reading (Massachusetts) u.a. 1999.

[Schn00] Bruce Schneier: Secret & Lies – Digital Security in a Networked World. John

Wiley & Sons, Inc. 2000.

[ShAh00] Michael E. Shin, Gail-John Ahn: UML-Based Representation of Role-Based Ac-

cess Control; Proceedings of the 9th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises 2000, Pages: 195 -

200

